
rForm ApprovedRE PITOENTATION PAGE OWNO. 0704-OI88

Ia. REPORT SECURITY CLASSIFICATION IL A % lb. RESTRICTIVE MARKINGSUNCLASSIFIED bF1i FrTF EJ "
2I. SECURITY CLASSIFICATION A ITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

AUG 18 1989 Approved for public release;
2b. DECLASSIFICATIONDOWNG SCHEDULEn distribution unlimited.

In]I__ _ __ _

4. PERFORMING ORGANIZATION REPORT NUMBER S-.MOIf RRGWATON REPORT NUMBER(S)

N a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

___________________2 __A _ _________ AirForceOffice ofSelentififRenurch

ZIP ADDRS (City State, ind ZPCode) 7b. ADDRESS (City, State, and ZIP Code)

It'j)0d. 1 C ' Building 410

0 Bolling AFB, DC 20332-6448
S&. NAME OF FUNDING/ SPONSORING b.OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION(iaplcbe

AFOSR __ __ __ __ _ A_ ___N s _ __ __C_ _ __ __ __ __ __ __

ft- ADDRESS (City, Stae, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Bolling AFB, DC 20332-6448 ELEMENT NO. NO. NO. 3CCESSION NO.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 611Q2F 2 4 /

11. TITLE (Include Security Classification)

12 ESNLATHOR(S) J~-

13a. TYPE OF REPORT 13b. TIME COVERED 4. DATE OF REPORT (Year, Mbnt, 0a) 15. PAGE COUNT
FROM To

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necesary and identify by block number)

This effort supported the research activities of 20 researchers during their
visit to ICASE, as a result, 10 papers have appeared on issues related to
parallel computation including such titles as "Reordering computations for
parallel execution. 'Multiprocessor L/U decomposition with controlled
fill-in, and mAnalysis of a parallelized nonlinear elliptic boundary value
problems solver with applications to reacting flows".

20. DISTRIBUTION I AVAILABIIUTY 9 ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
M UNCLASSIFIEDIUNLIMITED U&SAME AS RPT. C OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
I A-. CO I T F C , 51 (202) 767-, i()2'1, 1 K

00 Form 1473, JUN 86 Pre vious edtions are obsolete. SEC INRS.SPAG

89 8

NASA CR Report 178377

ICASE REPORT NO. 87-65

ICASE
COMPARING BARRIER ALGORITHMS

Norbert S. Arenstorf

Harry F. Jordan

Contract No. NASI-18107
September 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIUNCE AND ENGIERING
NASA Lansley Research Center, Hmpton, Virginia 23665

Operated by the Universities Space Research Association

NA/SA
- .M VWkn 236S5

Comparing Barrier Algorithms

Norbert S. Arenatorf
and

Harry F. Jordan A P . 8 9- 1]27

Computer Systems Design Group
Department of Electrical and Computer Engineering

University Of Colorado, Boulder

ABSTRACT

A barrier is a method for synchronizing a large number of con-
current computer processes. After considering some basic synchroniza-
tion mechanisms, a collection of barrier algorithms with either linear or
logarithmic depth will be presented. A graphical model is described
that profiles the execution of the barriers and other parallel program-
ming constructs. This model shows how the interaction between the
barrier algorithms and the work that they synchronize can impact their
performance. One result is that logarithmic tree structured barriers
show good performance when synchronizing fixed length work, while
linear self-scheduled barriers shcw better performance when synchroniz-
ing fixed length work with an imbedded critical section. The linear bar-
riers are better able to exploit the process skew associated with critical
sections. Timing experiments, performed on an eighteen processor
Flez/S2 shared memory multiprocessor, that support these conclusions
are detailed.

Research was supported by the National Aeronautics and Space Administration under
NASA Contract No. NASI-18107 and Air Force Contract AFOSR 85-0189 while the
second author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
Additional support for both authors was provided under Contract No. NAG-1-640.

a t a liS I H lliliill ~i i li i im 4

1. Introduction
A barrier is a method for synchronizing a large number of concurrent computer

processes. It is a convenient programming tool if the completion of one part of a
parallel program is required before any processes may begin execution of the next part.
This paper will develop and consider the relative performance of a variety of different
barrier algorithms. The performance of the barrier algorithms will be modeled in
terms of a shared memory multiprocessor. Interestingly enough, the interaction of the
barrier algorithms with the arrival behavior and departure requirements of the the
various processes may impact their performanc. "...atically. We will see that
different barrier implementations can deliver the best performance under differing run
time conditions. Actual timing data will be considered.

In an attempt to provide for a fair comparison, all the barrier algorithms
presented will have the following points in common. All algorithms will reinitialize
themselves during use, so that the barriers may be used repetitively in loops, etc.
None of the barriers will have execution times, synchronizational complexity or data
requirements greater than proportional to np, where np is the number of processes
participating in the barrier. The barrier algorithms all function correctly, even if one
or more of the participating processes are suspended for a finite length of time at any
point during execution. Finally, each barrier allows for a sequential code block to be
executed by a single process; that is to say, when executing a barrier all processes will
synchronize (the entry phase), then one process will execute the sequential par, then
all processes will be released (the signal phase).

The barrier is a control oriented synchronization. If one knows that all processes
have arrived at a particular point, then indirectly one knows that all data references of
the previous parallel computation have been completed. It structures a program into a
sequence of parallel computations. Successive barriers approximate the well known
Fork - Join concept. A barrier is similar in nature to a Join followed by a Fork,
except that the number of processes necessarily remains fixed across a barrier, and
each process preserves its private r-,!-,ry state across a barrier. In a situation analo-
gous to the code block allowed Liween a Join and a Fork, the barrier algorithms
presented in this paper allow an op .al sequential code block between the parallel
execution phases that are being synchronized.

The barrier was first proposed in 1978 as a hardware feature for the Finite Ele-
ment Machine being developed at the time at NASA Langley [1]. Since then the bar-
rier has evolved into a widely used parallel control construct. Barriers are included in
several programming paradigms, including software planned for IBM's RP3 project 100o*,. 0

[2]. Lusk and Overbeek's monitors [31, Jordan's programming language Force [4], and #
the synchronization primitives described by Frederickson, Jones and Smith (5].
Sequent. Computer Systems includes a barrier implementation with the parallel pro-
gramming library supplied with their Balance 8000/21000 systems [6]. Although bar-
riers are widely used and the semantics are well understood, barrier implementations or
have seen little attention in the literature, with Axelrod's analysis of the butterfly bar-
rier in [7] being a notable exception. This paper proposes to investigate high perfor- 0
niance barrier algorithms in great detail and to present some new barrier concepts,
such as an alternating polarity, simple tree structured communications, and elimina-
tion of the need for atomic read--write cycles in shared memory. These algorithms will
be compared to existing algorithms when appropriate.

2. Argument for correctness of the algorithms i/

The barrier algorithms presented below will be directed towards a shared memory '
r Codes

MIMD multiprocessor. The barriers require both shared variables which can be Ald/or
accessed by all processes, and private variables which are unique for each process. For '
example, data structures used to implement synchronization must be kept in shared

-2-

memory; np, the number of processes, could be stored as either a shared or private
variable (since its value should not change); while the process id, a unique integer
between one and np that identifies each process, must be stored in a private location.

In the process of developing the algorithms, three basic concepts appeared. First,
some algorithms require only boolean variables in shared memory, while others use
spinlock routines that provide for atomic read--write access to shared memory loca-
tions. Second, the communication pattern of the entry phase may be either linearly or
tree structured. And finally, barriers may have symmetric entry and signal phases, or
the signal phase may be implemented as - ,rc-i. st identifying a reversal of polarity.

The hardware requirements for these algorithms are quite minimal. Only the
availability of shared and private memory is required by half of the algorithms. The
other algorithms require spinlock routines in addition. A spinlock is a software con-
struct which provides for mutual exclusion. Spinlocks typically are based upon a
hardware machine instruction allowing an atomic read--write cycle when accessing
shared memory. A spinlock atomically performs the following two actions: it waits
(spins) until its argument (called a lock) is clear, and then it sets its argument. Unlock
unconditionally clears (unlocks) its argument.

2.1. Synchronising shared variables vs. locks

It should be reiterated that attention will be restricted to synchronization that
will work repetitively. Consider three different ways of synchronizing two processes
as shown in Figure 2-1. These two process synchronization *mechanisms' can be used
as building blocks to achieve larger barrier algorithms. The dimensions specified for
the data structures in Figure 2-1 are those required by typical algorithms when syn-
chronizing np processes. The first algorithm relies only upon shared variables. The
state transitions of the shared boolean variables are used as signals between different
processes. This algorithm will be contrasted with others that use spinlock routines.

The first algorithm, (1), works because only two processes access flag(i), and each
can cause only one of the two transition/state changes. First, in order to indicate for
the master that it has arrived, the slave(i) causes the negative transition of flag(i).
Once the master has verified that this negative transition has occurred, then the mas-
ter responds by sending the slave an exit signal, the positive transition of flag(i). The
slave must wait for this positive transition to occur before it is released from the bar-
rier. There are two wait states, each of which is similar in function to a spinlock.
This algorithm spli.s neatly into entry and signal phases, and the master may execute
a sequential code block between its wait and set instructions.

A similar synchronization, (2) can be written using spinlocks. Algorithm (2b) is
semantically exactly equivalent to (2a), but (2b) expands the spinlock routines into
their logical components, allowing for an easier comparison with (1). The "&" symbol
in Figure 2-1 unites the two logically distinct operations of a spinlock. The slave
unlocks a lock that impedes the progress of the master, and then vice versa. Algo-
rithm (2) is roughly the same as (1), except that the two possible waiting states are
implemented with spinlocks, each of which requires a lock; so separate entry and sig-
nal data structures must be used, resulting in twice the data requirement of (1). Algo-
rithm (2) does not require the spinlocks to be implemented with atomic read--write
cycles.

Another two process synchronization mechanism, one that has been suggested for
use with the proposed butterfly barrier 171, is shown in (3). Unlike the other two algo-
rithms, (3) is entirely symmetric with respect to the pair of processes that it synchron-
izes, which is why the processes are denoted as partners, rather than as master and
slave. Again, (3a) is coded using spinlock and unlock routines; (3b) is the semantic
equivalent. At first glance, algorithm (3) appears to be superior to (2) because the two
processes may proceed in parallel. However, the price to be paid for this is that there

-3-

Data required: Shared boolean FLAG(2..np)
Initialize: FLAG(*)- true

MASTER SLAVE(i)
(I)wait until FLAG(i) is false set FLAG(i) false

set FLAG(i) true wait until FLAG(i) is true

Data required: Shared boolean ENTRY(2..np), EXIT(2..np)
Initialize: ENTRY(*)- locked, EXIT(*)- locked

MASTER SLAVE (i)
(2a) spinlock(ENTRY(i)) unlock(ENTRY(i))

unlock(EXIT(i)) spinlock(EXIT(i))

Data required: Shared boolean ENTRY(2..np), EXIT(2..np)
Initialize: ENTRY(*)-n true, EXIT(*)- true

MASTER SLAVE(i)
(2b) wait until ENTRY(i) is false set ENTRY(i) false

& set ENTRY(i) true wait until EXIT(i) is false
set EXIT(i) false & set EXIT(i) true

Data required: Locks SYNC(l..log2(np), 1..np)
Initialize: SYNC(*,*)- locked

PARTNER(i) PARTNER(j)
(.3a) ipin-unlock(SYNC(lev,j)) .9pin-unlock(SYNC(levji))

spinloek(SYNC(lev,i)) 8pinlock(SYNC(lev,j))

Data required: Shared boolean SYNC(1..log2 (np), 1..np)
Initialize: SYNC(*,*)-true

PARTNER(i) PAR TNER(j)
(3b) wait. until SY'NC(lev.j) is true wait until SYNC(ley.i) is true

k set SYNC(lev,j) false & set SYNC(lev,i) raise
wait until SYNC(lev,i) is false wait until SYNC(lev,j) is false
& set SYNC(lev,i) true .& set SYNC(lev,j) true

Figure 2-1 Three basic two process synchronization mechanisms

is no way to incorporate a sequential code block into this algorithm. More impor-
lantly, this algorithm is incorrect for repetitive barriers if it is implemented with an
unconditional unlock routine. For example, if PARTNER(i) is suspended after execut-
ing its unlock instruction, but PARTNER(j) continues execution and reaches another
barrier, then PARTNER(j) may unlock partner(i) a second time before PARTNER(i)
has had a chance to lock it. If this occurs, then the barrier fails and some processes

-4-

will deadlock on the final barrier to be executed. This problem may be corrected if the
unlock is replaced with a spin-unlock. A spin-unlock would wait until its argument is
locked, and then unlock it. With this understanding, we see that (3) has no advantage
over (2), since each now has a depth of two waiting statements. Once again, the read-
-write atomicity of the spinlock routine is unnecessary for this application.

Comparing (1), which is a master-slave algorithm, with (3), which is symmetric,
one can see that (3) has the same depth as (1), and exactly twice the computation.
Algorithm (3) is like a rearranged version of (1) united with its mirror image (master
and slave roles rever-rd). -ith both halves running in parallel. In this fashion (3)
becomes a symmetric version of (1). However, algorithm (1) is simpler and sufficient to
synchronize two processes. Only synchronization mechanisms (1) and (2) will be used
to develop larger barriers in the sections below.

2.2. Symmetric structure vs. broadcast exit polarity

We have seen that the algorithms presented so far have distinct entry and signal
phases. The signal phase of a barrier may be implemented as the symmetric image of
the entry phase, with the exit signal propagating out in the same fashion as the entry
signal was communicated. Or one may implement the signal part using the polarity
exit mechanism presented below. Assigning a polarity to barrier iterations allows bar-
riers with a single data set to be executed repetitively, without requiring a signal phase
analogous to the entry phase.

Earlier it was postulated that if a shared boolean synchronizing variable was used
by only two processes, and each could initiate only one of the two possible state
changes, then no atomic read--write access would be necessary to insure correct syn-
chronization. The exit phase of a barrier requires a single process to essentially broad-
cast a signal to all others indicating that they may exit. Perhaps, it is possible for a
single separate shared data element to convey the exit information. Only one process
should be able to change the state of this exit variable, while all others would have
only a read capability.

Some problems come to mind immediately. The exit phase of the barrier may
need to serve to reinitiali:e the barrier so that it will function properly on its next
iteration. Is it possible to code an algorithm, one that uses a single exit data variable,
that. will also correctly reinitialize itself for future iterations? The answer is yes, but it
requires an increase in the complexity of the algorithms. The introduction of a private
boolean variable indicating the polarity of the current barrier iteration is one way to
handle the reinitialization problem.

Successive barriers will alternate polarities. All processes will share the same
polarity on a given iteration of a barrier, defining the polarity for that barrier itera-
tion. The polarity is a private variable for each process, just as the process id is
private. Processes will compare their polarity with a shared exit variable. Note, at a
given point in time, one process could be entering a barrier with one polarity, while
another process was still exiting the previous barrier of opposite polarity.

A basic broadcast exit signal mechanism is shown in Figure 2-2. The barrier exit
signal is the change of state of the shared exit variable. One can see that the slaves
will be able to correctly differentiate between successive exit signals, since the follow-
ing barrier will have the opposite polarity, and all slaves will be inhibited until the
master sends the next exit signal. This exit mechanism provides for a nearly simul-
taneous release of concurrent processes from a barrier, limited only by how the specific
machine architecture handles concurrent reads of a single shared memory location.

However this synchronization mechanism does not give the master any informa-
tion as to when and if all the slaves have received the exit signal. Any time a signal is
sent, there must be a two way flow of information to let the sender know that the

-5-

Data requirement: Private booleanpolarity
Shared boolean EXIT

Initialize: polarity- true, EXIT- false

MASTER SLAVES
(4) EXIT :- polarity wait until EXIT- polarity

polarity :- not polarity polarity :- not polarity

Figure 2-2 Broadcast exit signal mechanism

signal has been received. If the master issues the next exit signal too soon, before all
slave processes have quit waiting on the previous exit state change, then the barrier
would be incorrect. This issue is solved if the broadcast exit mechanism is interleaved
with a correct entry algorithim. In this fashion, the master would issue the exit signal
only when assured that all processes have entered the current barrier iteration. Thus,
indirectly, the master knows that all processes have "seen" the previous exit signal.

The addition of an alternating polarity to the barrier is compatible wit the
semantic barrier concept, precisely since all processes are required to attend tdeach
iteration of a barrier. Thus if all processes are initialized to the same polarity, then we
see that it is impossible for processes to get their polarities out of sync, no matter how
the barriers are distributed in program code. Thus, a single master can send many
slaves an exit signal.

An algorithm somewhat along these lines has been described in [4]. That algo-
rithm uses a system call to signal an event; and the operating system insures that all
the slave processes waiting for the event to occur, do in fact receive it.

Data requirement: Private boolean polarity
Shared boolean ENTRY(2..np), EXIT

Initialize: polarity- true, ENTRY(*) false, EXIT = false

MASTER SLAVES(i)
(5) for each i do

wait until ENTRY(i)= polarity ENTRY(i) :- polarity
endfor wait until EXIT- polarity
EXIT :- polarity polarity :- not polarity
polarity :- not polarity

Figure 2-3 Linear barrier with broadcast exit

Finally. the algorithms that use synchronization mechanism (1) require the signal
phase to reinitialize the data structure for the entry phase. With the use of the broad-
cast exit phase, the entry phases will need to reinitialize themselves. It turns out that
the same polarity state can be used to modify (1) in order to achieve this end. A
resulting linear algorithm, (5), is presented in Figure 2-3. Let the process with id-1
be designated the master, while all other processes are slaves. The slaves are indexed
from 2 to np, with the slave index being equivalent to the process 1d. In (5) the mas-
ter receives signals indicating that all slaves have changed the state of their entry

-6-

variables. Then and only then does the master broadcast its change of state. Thus,
proper synchronization is insured. A tree structured version of this algorithm with
logarithmic depth will be developed in the next section.

2.3. Tree structure vs. linear structure

The next idea to be considered is what type of communication pattern to employ
within the entry phase of the barrier algorithm. Either a linear or tree structured
approach may be used. A linear approach tends to be simpler since it typically
req -es '.o er overhead calculations. However, a tree structured approach has loga-
rithmic depth. In order to develop a tree structured barrier, two arrangements of the
linear algorithm will first be considered. Consider the graphical representation in Fig-
ure 2-4 of the same algorithm outlined in Figure 2-3. In Figure 2-4, processes are
represented by vertical lines, and time flows downward.

If we think of the basic two process synchronization mechanism in terms of its
entry and signal components, then we see that the algorithm in Figure 2-4 works by
having a single master accept all the entry signals, then executing the sequential part,
and then issuing the exit signal. The ordering of the acceptance of the entry signals is
arbitrary, but practical implementations will require a pre-scheduled, fixed order.
Usually a Fortran style do loop is employed for this purpose. Np boolean shared
memory variables are required. This algorithm is coded in an extended Fortran as
bbrlin (linear broadcast barrier) in Appendix A. Also in the Appendix, a similar bar-
rier, with symmetric entry and exit phases instead of a broadcast exit, is coded as bar-
lin.

There is an alternate linear design, as shown in Figure 2-5. Instead of having a
single process accept all the entry signals from its slaves; this design has each process
accept the entry signal from its next higher numbered neighbor, and then issue its
entry signal to the next lower numbered neighbor. In this manner, the entry signals
will propagate down to the lowest numbered process. This modified linear algorithm
requires a fixed ordering in its communication pattern. The processes numbered I and
np are special cases, thus this algorithm requires additional branching if a single pro-
gram guides all processes. Thus, this algorithm is less efficient than the previous one.

However, there is a point to be made here. Using only the two process synchroni-
zation mechanisms developed earlier, both of these linear algorithms successfully syn-
chronize many processes. It is possible for a single process to synchronize with several
neighbors, and it is also possible for processes to propagate several signals onward to
others. The point here is that if one accepts the validity of both of these algorithms,
then it is a simple matter to postulate the existence of a binary (or other dimensional)
tree structured algorithm. For the binary tree, at each node a process would accept
the entry signal from one neighbor, and then it would propagate this signal along with
its own presence to the next lower level of the tree. A binary tree structured algorithm
is presented graphically in Figure 2-6, and coded as bbrtre (broadcast tree) in Appen-
dix A. In Figures 2-8 and 2-7, array subscripts are shown in order to identify the
ehared variable being operated on at each point in the tree.

This is a powerful algorithm. The depth is only i + r log2(np) 1. As with the
linear algorithms, only np boolean shared memory data elements are required. This
barrier is completely self resetting and airtight, in the sense that if one or more
processes are suspended during execution, the barrier is delayed but otherwise contin-
ues to function correctly.

While the depth is logarithmic, each stage of a tree barrier requires m-re compu-
tation than for a linear barrier, since not only must the synchronization be accom-
plished, but each process must first calculate with which neighbor to synchronize.
This calculation is further complicated if np is not constrained to be a power of two.
The algorithm shown in Appendix A dynamically calculates with which neighbors to

-7-

time id-In id-2 idin3 id-4 id-5

Wait eni pcfe

0 = aritbl e ciie set specified variable sequentialvaibeis equal to polarity part (optional)
to polarity

Figure 2-4 Linear barrier graph (nested entry structure)

time id-i id-2 id-3 idin4 id-5

entry(S)i

entry(4)

en try (3)

exit exit e~xit exit
key:

v aritbuetisul scified set specified variable nsequential
toparityeseqa to polarity part (optional)

Figure 2-5 Linear barrier graph (propagated entry structure)

-8-

time,,id: 2 3 4 5 6 7 9 10 1o 1

key:

set o1 ol
'A_ specified

kvariable7
to polarity 5 o

wait until 2€
Oa specified

variableis equal i I
to polarity

exit exit exit exit exi exit exit exit exit exit

sequential

part (optional)

Figure 2-6 Binary tree barrier with broadcast exit

synchronize. It requires about five primitive integer operations (shift, compare, add)
in order to calculate the neighbors id. at each stage of the entry phase. Surprisingly, a
version which precalculates these id's and then stores them in a private array, requires
nearly as many integer operations to fetch the numbers from the array. However.
some run time advantage would probably be achieved using the precalculated
approach. at the cost of an additional data structure.

Instead of using the broadcast exit mechanism, it is possible to have a double tree
structured barrier, with the symmetric entry and signal phases. A graphical version of
this barrier is shown in Figure 2-7. For a hard coded example of this algorithm, see
bartre in Appendix A. The depth is now increased to 2log2(np), but we can do away
with the polarity concept, simplifying the environmert somewhat, and also (np-i)
processes are not all competing to read a single exit variable at once. The same shared
boolean data structure, an array indexed from 2 to np, is used by both the entry and
signal parts.

If one wanted to use spinlocks, then it is still possible to employ a tree structured
algorithm. Spinlock routines will usually be more expensive, but they may provide
superior performance on certain types of hardware (hardware interrupt driven lock
tables, for example). Barrier algorithms coded with spinlock routines require separate
data structures to be used for the entry and signal parts of the barrier, unless a broad-
cast exit signal is used. A tree barrier with broadcast exit and a double tree barrier.
both using locks, are coded as bbrtri and bartrl, respectively, in Appendix A. These
are some barrier algorithms that use two process synchronization mechanisms as their
building blocks.

-9-

time id: 1 2 3 4 5 6 7 8 9 10 11
time

key: 4

cit . 5 6

ffs indicated
variable 3

Onwait until 2
e clear

setindicated
variable

Ge wait until

a sequential 9 10 11
part (optional)

Figure 2-7 Double tree barrier

2.4. Linear barriers with critical sections
Another quite different linear approach is possible, one that has traditionally been

employed. In this algorithm, a critical section using either an entry or exit lock is used
to protect a shared counter variable. Processes count in (except the last), and then
spin on the exit lock until the counter is equal to np, at which point they count out
(except the last). When all processes have counted out, the input lock is reset, allow-
ing the processes to reenter again on the next barrier iteration. Thus, the counter
variable swings between one and np, and is either (under protection of the entry or
exit lock) monotonically increasing or monotonically decreasing, until an endpoint is
reached, at which point it is reversed. Careful coding allows the use of only two locks,
and each process (except the last) requires two accesses into a critical section per bar-
rier iteration. Processes will be skeued in time somewhat as they are go through, one
by one, the entry and exit critical regions. The average depth of this algorithm is only
np, not 2np, since the entry and exit phases may effectively be overlapped, if there is
sufficient work between iterations of the barrier.

This algorithm is shown in Figure 2-8. The pseudo code shown below (Figures 2-8
& 2-9) is to be executed by all processes participating in the barrier. A modified ver-
sion of this algorithm is coded as barlok in Appendix A. Barlok has been modified to
allow a sequential part within the barrier, and to insure that the sequential part will
always be executed by the same process. On a side note, it may be desirable to insure
that the same process always executes the sequential part of a barrier. For example. if
there are private variables used within the sequential part on successive barrier itera-
tions, then allowing different processes to execute the sequential parts may introduce
unwanted non-determinism into a program's execution. Also, the sequential part of a

-10-

barrier is often used for file i/o; and on some machine architectures file i/o is
simplified if the same process always does the i/o.

Data requirement: Locks ENTRY, EXIT
Shared Integer COUNTER

Initialize: ENTRY- unlocked, EXIT- locked,
COUNTER-1

ALL PROCESSES
apinlock(ENTRY)
if (COUNTER < np) then

COUNTER : COUNTER + 1
unlock(ENTRY)
spinlock(EXIT)

endif
if (COUNTER = 1) then

unlock(ENTRY)
else

COUNTER :- COUNTER - 1
unlock(EXIT)

endif

Figure 2-8 Two lock barrier algorithm

A version of the two lock barrier that incorporates the broadcast exit/polarity
mechanism is given in Figure 2-9. Only one lock for the single critical section is
required. Under protection of the critical section, processes decrement the shared
counter. The last process to decrement the counter then assumes the role of master
and issues the exit signal to all the other processes. Once again, a modified version of
this algorithm is coded in Appendix A as bbrlok. The modified version allows a
sequential part and insures that the process with id-1 will always be the one to exe-
cute the sequential part.

It should be noted that fetch and add [8] hardware can eliminate the need for criti-
cal sections entirely and reduce these algorithms to logarithmic depth. Tang and Yew
outline a barrier algorithm incorporating the use of fetch and add though Cedar primi-
':.es [9J. However, that implementation requires subsequent barrier iterations to use
-iifferent data sets in order to guarantee correct execution free of race conditions.

-11.-

Data requirement: Private boolean polarity
Private integer mycount
Shared boolean EXIT
Shared Integer COUNTER
Locks ENTRY

Initialize: polarity- true, EXIT- false,
COUNTER- np, ENTRY- unlocked

ALL PROCESSES
spinlock(ENTRY)

mycount :- COUNTER - I
COUNTER :- mycount

unlock(ENTRY)
if (mycount-0) then

COUNTER :- np
EXIT :- polarity,

else
wait until EXIT-polarity

endif
polarity :- not polarity

Figure 2-9 Single lock barrier with broadcast exit

3. A graphical run time parallel execution model
Why develop so many different barrier algorithms, when they all achieve the same

function! Obtaining the best run time execution speed usually is the primary concern.
In this section, a graphical model will be used to investigate the run time performance
of the barriers. Barriers tend to maximize the negative effects of uneven load balanc-
ing between processes between barrier iterations. However, this type of inefficiency is
due to the programming application, and is thus beyond the scope of this paper. What
is of interest, here is the additional overhead, if any, introduced by the barrier algo-
rithm. Specifically, the interaction of the barriers with the parallel programming con-
structs that they synchronize will be examined. The analysis here will not attempt to
be exhaustive, it is instead an attempt to gain some insight into the run time behavior
of the different barrier algorithms.

Parallel execution within a given programming construct will be modeled using
profiles. Profiles are shown as two dimensional geometric shapes. A profile includes
within its perimeter all the computation corresponding to the programming construct
that it represents. On an x,y grid profiles are plotted by processes against time. As
in the previous graphs, the processes are plotted along the x axis, and time flows down-
ward along the y axis. Computation internal to a profile is not of interest. What is
shown by a profile is the time that each process enters and then exits a given con-
struct. We limit our attention to parallel programming constructs that are executed
(on each iteration) by all of the processes.

The power of the model lies in seeing how well different combinations of profiles
fit together. This model will consider three categories of parallel programming con-
structs: parallel work blocks, critical sections. and barriers. This programming model

-12-

supposes that an arbitrary but fixed number of processes execute a single program con-
sisting of these constructs. The goal is to minimize the execution time of a given
sequence of parallel programming constructs. This execution time is modeled by
measuring the elapsed distance along the y-axis occupied by the corresponding
sequence of profiles. No portion of a given profile may be superimposed on any part of
another profile. If adjacent profiles do not fit together exactiy, then the resulting
white space is wasted in the sense that processes are just spinning, although this white
space may be semantically necessary. A key point here is that other constructs,
including the barrier itself, are free to exploit this white space without reducing the
overall performance. Timing runs supporting this analysis will be presented in the fol-
lowing section.

Parallel work blocks are assumed to be non-blocking constructs, consisting of
some scheduling mechanism which parcels out chunks of single stream work to the
various processes. These chunks of work may then be executed in parallel. The area
of a parallel work profile corresponds to the total computation and scheduling over-
head associated with that parallel work block.

Critical sections provide for mutual
time exclusion. The profile for a critical section

processes J will contain only the computation that a
ideal__barrierprocess performs while it is actually within
ideal barrier the critical section. The time spent wait-

.. . fixed work ing by processes that are temporarily

S _'_ ideal barrier blocked by a critical section is shown as
rwhite space in the model. This kind of

waiting is caused by the semantic concept
variable of a critical section, so it is not appropriate

work *to include it as part of the cost of the

ideal barrier implementation of the critical section.

fixed work The barrier, another blocking con-
struct, is treated in a similar fashion.

critical section Blocking that is semantically inherent to a
barrier will not be included within its

fixed work profile. Again, this kind of waiting is
ideal barrier shown as white space. Consider an ideal

Figure 31 barrier as shown in Figure 3-1. Since there
Profiles: ideal barrier is no computational overhead associated

with an ideal barrier, the profile for this
barrier is shown as a horizontal line, with
no thickness. It will block the processes
that encounter it until all have arrived. If,

for example, several processes have encountered a barrier and these processes are wait-
ing for some stragglers, then this waiting is semantically inherent to the barrier and is
shown as white space. However, additional waiting or computation required only by
the specific implementation of a barrier algorithm will be included within the profile
corresponding to that barrier. Thus, the profiles for non-ideal, real barriers attempt to
show the overhead costs associated with the barrier implementation. Note, the profile
for a correct real barrier must include within its perimeter the profile of the ideal bar-
rier.

The absolute depth of a profile refers to the elapsed distance along the y axis,
meaning the elapsed time, that a profile would require if it were sandwiched between
two ideal barriers. Under certain circumstances, adjacent profiles are able to overtap
all or part of their execution. Overlap does not refer to physical superposition of the

-13-

profiles (which is not allowed); instead overlap refers to the situation where some
processes are still executing within one profile, while others are already executing
within the next profile. Thus, the execution of separate constructs may be partially
overlapped in time. If overlap occurs between two or more successive profiles then one
can see that the resulting effective depth of a sequence of profiles will be less than the
sum of the absolute depths.

An interface between two adjacent profiles is defined as the exit contour of the
first profile taken together with the entry contour of the following profile. The degree
of overlap between two adjacent constructs depends upon this interface. Two general
situations can occur. Entry contours may be either pre-scheduled or self-scheduled
with respect to the process id. If processes must enter a profile in a specific order, then
the corresponding entry contour is pre-scheduled. Pre-scheduled entry contours may
or may not be able to overlap with uneven exit contours, depending on the order in
which processes are released from the exit contour. On the other hand, if processes
may enter a profile in any order, the entry contour is termed self-scheduled and it can
overlap as much as is possible with the preceding exit contour. If an interface is pre-
scheduled, we plot the processes along the x axis in the order of their process ids, from
one to np. where np is the number of processes. However, if an interface is self-
scheduled. the processes are plotted from faatest to slowest. The fastest process is
defined as the first process to enter (or exit) a given iteration of a parallel program-
ming construct. Likewise, the slowest process is defined as the last process to enter (or
exit) a parallel programming construct. In this fashion, all the processes may be
ranked from fastest to slowest. (Note, the designation of fastest or slowest maylvary
dynamically among the processes.) The ability to exchange the two orderings, either
from one to np or from fastest to slowest, requires that the processes involved be fairly
homogeneous. These two orderings of the processes will prove useful when analyzing
the interfaces between successive profiles.

Three parallel Vork blocks interspersed with ideal barriers are shown in Figure
3-1. For the sake of simplicity, the optional sequential code blocks of the barriers are
ignored. The absolute depth of a parallel work block is given in (6), where W(id) is
the time that each process requires to do its share of the work. In the case of fixed
length work, the W(id)'s will all be the same, so the overall depth, W p, is then
equivalent to W(id). The absolute depth of a critical section, Cup, is given in (7),
where C(id) is the time each process spends inside the critical section. If C(id) is a
constant, then Cap simplifies to np*C(id). However, even if each process executes
the same code in a given critical section, C(id) may not be a strict constant. If the
time required for a process to signal that it is exiting a critical section is proportional
to the number of processes actively waiting for that signal, then C(Id) has a depen-
dence on the number of processes seeking access to the critical section.

XP

(0) Wp -MAX W(id)0) W~p d- 1

(7) cup= f C(id)
id- I

The eight barrier algorithms developed earlier will be divided into the following
three classes: linear self-scheduled, linear pre-scheduled, and tree structured. The
profiles model will be employed to illustrate some differences in behavior among these
classes of algorithms. For each class of barrier, three cases will be examined: barriers
interspersed with fixed length work, barriers interspersed with pre-scheduled variable
length work, and barriers interspersed with fixed length work which contains a critical
section. When the barrier and work profiles are combined, the effective depth of the

-14-

barrier is defined to be the increase in depth over the absolute depth of the work
block.

3.1. Linear self-scheduled barriers

The single lock barrier is a linear barrier algorithm with depth proportional to
np. The profile of the single lock barrier has a self-scheduled entry contour, meaning
that the processes may enter in any order, but no faster than one at a time. Self-
scheduling is implemented through the use of critical sections internal to the barrier.
T he two lock barrier is similar to the single lock barrier, except it has symmetric struc-
ture, releasing the processes one at a time, as well. Although the absolute depth of the
two lock barrier is twice that of the single lock barrier, when synchronizing fixed
length work, the effective depth of either of these barriers is np. This is apparent from
Figure 3-2.

time

linear self-
sched barrier

1 T h U fixed work

linear self-
sched barrier

variable
work

variable work
linear self- (best cse)

sched barrier

axed work

critical section

fixed work

linear self-
sched barrier

Single l1o barrier
(broadcast elnt) (b)

Two lock barrier
(symmetric structure)

Figure 3-2
Profiles: linear self-sched barriers

If the parallel work is of variable length, then the analysis becomes more compli-
cated. Let the work variation be pre-scheduled (no load balancing employed). Con-
sider, for example, if one work assignment (or process suspension) dominates the work
distribution. Considering the single lock barrier, the effective depth of a parallel work
block dominated by a single long work assignment will be close to zero. (See Figure 3-
2.) As the work load becomes more evenly balanced, the depth of the single lock

-15-

barrier increases and approaches up. For the two lock barrier, if the first process to be
released from the barrier receives this long unit of work, this process would be the last
one to enter the next barrier iteration, resulting in an effective barrier depth of close to
zero. However, if the last process released receives the dominating work assignment,
then although this process would still be the last one to enter the next barrier itera-
tion, the effective depth of the barrier is now rip. Thus, for this example, the average
effective depth of the two lock barrier will be np/2, still linear but reduced by a factor
of two. Other distributions of the variable length work will show similar effects, the
degree of the reduction of the effective depth will depend on the exact distribution,
however, on the average, the effective depth of the two lock barrier synchronizing pre-
scheduled, variable length work is between up and np/2. So, in general, for the case
of variable length work, the single lock barrier shows substantial preformance
improvement over the two lock barrier. The pre-scheduled variable length work block
can be used to approximate the slight variations in the exit contour of a self-scheduled
parallel work block.

For the case of fixed length work with an imbedded critical section. we see that
both the single lock and two lock barriers are close to ideally efficient! Since the criti-
cal section requires processes to arrive in skewed order for maximum efficiency, we see
that it does not hurt if the barrier implementation lets the processes out in a skewed
fashion. And since the processes leave the
critical section in a skewed manner as well,
then if the barrier requires a skewed entry, linear prr-
no additional performance penalty is sched barrier

incurred, as shown in Figure 3-2a. if......I sxed work

3.2. Linear pre-scheduled barriers linear pre-

Instead of using critical sections, the 4 sched barrier

pre-scheduled linear algorithms require a variable work
single master to accept the entry signals (worst case)
from all other processes, one at a time, in a
predetermined order. The pre-scheduled
barriers require less time to complete each
stage of their algorithms, since they do not I lihearrer
require a critical section at each stage. A

profiles model of the linear pre-scheduled J j , fixed work
barrier with broadcast exit is shown in Fig-
ure 3-3. critical section

The linear barrier with broadcast exit fixed work
has a depth of np+ 1 for the case of fixed
length work. The symmetric pre-scheduled linear pre-
linear barrier occupies the master process sched barrier
throughout both the entry and exit parts of Figure 3-3
the barrier. Thus, the effective depth of Profiles: linear pre-sched barrier
this linear barrier remains 2*np for fixed w/ broadcast exit

length work, since the master must also
perform its share of the work. If the work distribution becomes variable, the pre-
scheduled linear barriers also show reduced depth but not to the extent of their self-
scheduled counterparts. For example, the worst case scenario pictured in Figure 3-3
could not happen if the entry contour of the barrier was self-scheduled.

When synchronizing critical sections, the effective depth of the pre-scheduled
linear barriers is not as good as the effective depth of their self-scheduled counterparts.
If the processes go through the critical section in the optimal order, ie, master first,
then slaves in the order of their process ids, then the effective depth of the barrier will

-16-

be close to optimal. However, if the master happens to be the last process to go
through the critical section, then the next barrier iteration will have its full depth.
Thus, one would expect some reduction of the effective barrier depth when synchroniz-
ing work containing critical sections, but not the near optimal behavior of the self-
scheduled linear barriers.

3.3. Logarithmic tree barriers
The tree barriers have depth logarithmically proportional to np. The profiles for

the tree barriers, as shown in Figure 3-4, are quite simple, since they are rectangular in
shape, with flat entry and exit contours. The tree barriers also are analyzed for each
of the three conditions above, fixed length work, variable length work, and work con-
taining a critical section, however, the analysis will be much simpler. Unlike the linear
barriers, the effective depth of the tree barriers is nearly independent of the type of
parallel work that they synchronize. No matter in what order processes arrive, each
process, including the last, must go through all the stages of the tree. If the process
arrival times are skewed, some variance in the effective depth results since the time a
process spends at each stage varies slightly depending on whether it is playing a mas-
ter or slave role at that node. But this is only a minor effect. Thus, even if there is a
wide variance in process arrival times, the effective depth of the tree barrier remains
nearly constant.

The analysis for tree barriers with broadcast exit is similar. The only difference is
that the broadcast exit reduces the depth from 2*log-.,np) to logo(np)+ 1. If locks are
used, then each stage of the tree would be expected-to have a longer execution time
compared to trees that use only boolean variables, resulting in a longer total execution
time. Otherwise, the analysis is unchanged.

4. Timing results
Timing runs on an actual shared memory multiprocessor support the predictions

derived from the profiles parallel execution model developed above. Several experi-
ments timing all eight barrier algorithms were run on a Flexible Computer Corpora-
tion Flez/32. In order to evaluate the effect of the number of processes (np) on bar-
rier performance. np was varied from two to eighteen in increments of two. Barriers
synchronizing fixed length work, variable length work, and fixed length work with an
imbedded critical section were timed in three separate experiments.

4.1. Methodology
Each experiment consisted of nine trials; one trial for each of the eight barrier

algorithms, and one trial simulating the behavior of the ideal barrier. For each of the
eight "regular" trials, a barrier followed by the parallel work block corresponding to
that experiment was placed in a loop, and execution of this loop was timed for 100000
iterations. The timing of the ideal barrier when synchronizing the various work blocks
was simulated using some algorithms described below. The elapsed time of the ideal
barrier trial was then subtracted from the elapsed times for each of the other eight tri-
als. These resulting times were then divided through by the number of iterations of
the loop, yielding a measure of the per iteration overhead (effective depth) imposed by
each of the eight barrier algorithms.

The first experiment consisted of timing barriers that synchronized a fixed length
parallel work block. The fixed length work required each process to execute 30 itera-
tions of single precision multiply additions (mul-adds) and some associated subroutine
linkage. This number of mul-adds is sufficient to insure that successive barriers will
not attempt to overlap with each other. Strictly private operands were used. A bar-
rier followed by the fixed length work block was placed in a loop and timed for 100000

-17-

iterations. This measurement was repeated for each of the eight barrier algorithms.
The ideal barrier timing loop was simulated using a very simple algorithm: time only
the fixed length work for 100000 iterations.

The second experiment timed barriers :synchronizing variable length, pre-
scheduled, parallel work blocks. In a set up phase, processes iteratively filled private
arrays, called myrand, with 100000 random numbers. Processes also cooperated to
determine the maximum random number that was generated on each iteration, and
these maximum values were stored in separate private arrays, called maxval. The
random numbers ranged between 30 and 59, with a flat distribution among these
values. A linear congruential random number generator was used, and each process
calculated an initial private seed by adding its process id to a single shared "starter"
integer. Each iteration of the variable length work block required the processes to pull
a random number from their myrand arrays, and then they would execute that many
iterations of single precision mul-adds. For the timed part of this experiment, a bar-
rier followed by the variable length work block was placed in a loop and timed for
100000 iterations. The ideal barrier timing loop was simulated by timing a single pro-
cess executing 100000 iterations of "work" with no barriers; each "work" iteration con-
sisted of retrieving the maximum random number from the maxval array and then

executing that many mul-adds. In this
tree barrier manner an ideal barrier is simulated, since
fixe work an ideal barrier would have to wait, on
fixed work each iteration, for the process with the

.... Most work to finish.

tree barrier Finally, the third experiment timed
barriers synchronizing fixed length work
with an imbedded critical section. Each of

variable work these work blocks consisted of 15 mul-
adds, followed by a critical section, which
enclosed a single mul-add, followed by 15

tree barrier more mul-adds. Since each of the np
processes must execute the critical section

~F JJ fixed work in turn along with its private mul-adds;cthe ideal barrier timing loop is simulatedcritical section by timing 30+np mul-adds and np sub-

fixed work routine linkages (in order to simulate the

effects of the spinlocks) on each iteration.
tree barrier This experiment suffers from the difficulty

of approximating the ideal barrier exactly,
Figure 3-4 since the bus contention produced by the

Profiles: tree struct. barrier critical section cannot be exactly
accounted for, and this overhead could

thus be incorrectly attributed to the barriers.
These three experiments are interesting because they approximate some typical

parallel work scheduling mechanisms: pre-scheduling and self-scheduling [4]. Pre-
scheduling does not have the synchronization overhead required by self-scheduling
and is efficient when work iterations are constant in their execution time. Pre-
scheduling is often employed to schedele (non-branching) parallel loops. With pre-
scheduling, work iterations are divided up evenly among processes, irrespective of the
execution time required by each iteration. As is shown in Figure 4-1, if processes enter
a homogeneous pre-scheduled work block in unison, they probably will exit in a step
function, since np likely will not divide evenly into the number of work iterations.
The first experiment timing fixed length work approximates a pre-scheduled parallel
loop where np does divide evenly into the number of loop iterations. However, even if
processes exit in a step function, we still have the situation where many processes exit

-18-

the work block at once.
Self-scheduling provides for load balancing and is efficient when work iterations

vary in their execution times. With self-scheduling, under protection of a critical sec-
tion, processes take the "next" available work descriptor from a shared scheduling
mechanism whenever they are ready for additional work. In spite of the load balanc-
ing concept, processes will be somewhat skewed in time as they exit a self-scheduled
parallel work block. This skew results from variance in work execution times and/or
the effect of the critical section used to schedule the work iterations. The second and
third experiments approximate barriers synchronizing self-scheduled work since they
model variable length work and the effects of critical sections, respectively.

4.2. Computing environment
These three experiments were run on a Flex/32 shared memory multiprocessor

consisting of a shared memory store and a set of single board microcomputers with
true private memory on each board. Processes may be bound to processors, so unex-
pected process suspension is not a major issue. The Flex/32 supports efficient
implementation of spinlocks through a
hardware test and set machine language
instruction that is available to the user.
Memory accesses into private data struc- . ideal barrier
tures and instruction fetches do not inter-
fere with shared memory cycles on the dual
common bus. A proprietary architecture pre-scheduled
interfaces local busses with a dual common work
bus connected to shared memory. Unfor-
tunately, Flexible Computer Corporation
has not published detailed descriptions of
these interfaces. Flexible provides MMOS,
its distributed "multicomputing" operating Example: Let up 4. If there an 15
syStem 1101, to supervise parallel programs. units of work to be scheduled, with
The Flex/32 used belonged to the NASA pre-scheduling each proces re-
Langley Computational Structu,-al ceive either 3 or 4 work iterations.
Mechanics Group in Hampton, Virginia.
NASA's Flex/32 is configured with eigh-
teen processors able to run in parallel. Figure 4-1

Proiles: a pre-ached work block
4.3. Sources of timing error

Before describing the curves, let us
examine some sources of timing errors.
The clock function on the Flex/32 is imple-
mented through software using a system
interrupt. These system interrupts
increment a private clock (an integer variable). The timer granularity was one second;
since 100000 iterations were timed, the timing granularity per iteration is is reduced to
.01 millisecond (ms). Since the effective depth of the barriers per iteration was calcu-
lated as the difference between two elapsed times, the error due to timing granularity
(per iteration) is within * .02 ms. Over twenty four hours of parallel cpu time was
required in order to achieve this low timing granularity.

There is an additional source of error. Each processor receives the system inter-
rupt at the specified frequency. These interrupts occur asynchronously for the
processes in a round robin fashion. The duration of this interrupt has been measured

-19-

to be approximately .3 ms in duration. In order to minimize the effects of the system
interrupts. the timing program was compiled with a configuration specirying a fre-
quency of only one interrupt per second, hence a one second timing granularity. (A
lower frequency of interrupts is not possible under MMOS.) A .3 ms interrupt per
second represents only .03% of cpu time per processor. However, since the interrupts
occur asynchronously, when all 18 processors are being used, then during .54% of the
time one of the processors will be servicing the interrupt. This is the parameter of
interest when timing barriers! Fortunately, this magnitude of process suspension will
not significantly distort timing measurements. It should be noted that NASA's
Flex/32 has a default configuration of 50 MMOS system interrupts per second. While
this configuration reduces the timer granularity to 20 ms, the percentage of time dur-
ing which one of the processors is suspended is increased to a whopping 27%, clearly
unacceptable for timing barriers.

In order to insure that the compiler expands the timing loops identically for each
of the barrier algorithms being timed, the barriers were executed via subroutine calls
from within the timing loops. In this manner all the timing loops are guaranteed to
have the identical machine code, thereby eliminating a subtle source of timing bias
that could be present if the barriers were expanded in-line within the timing loops.

4.4. Results
The results for each of the three experiments are plotted in Figures 4-2, 4-3, and

4-4, Each figure shows curves corresponding to the various barriers, with different
values of np plotted against effective execution time (milliseconds per barrier itera-
tion). The effective execution time of a barrier is defined as the difference between the
execution time of the work and barrier combination and the execution time of the
work synchronized by an ideal barrier. All three figures are plotted using the same
time scale, allowing for comparison between figures.

For the case of barriers synchronizing fixed length work, Figure 4-2 plots the
observed effective depth of all eight barriers against np. One observation is that the
logarithmic tree barriers show better performance than the linear barriers, even for
small values of np. Also. the broadcast barriers (those using the polarity exit mechan-
ism) show superior performance than their symmetric (identical entry & signal struc-
ture) counterparts. Another observation is that the barriers that use spinlock routines
show marked performance degradation as np becomes large. This effect may be attri-
buted to increased bus competition that forces shared memory bus requests to line up
in a queue. If many processes are competing for access to a lock, one might think that
no performance degradation would result, since one of the processes should be succeed-
ing. even if others are having their bus requests delayed. This is indeed the case; how-
ever. inefficiency is introduced when the owner of a lock must compete for shared bus
access in order to unlock it. If 18 processes are competing randomly, the average
unlock command requires around 17 attempts before succeeding, assuming a single
shared bus with random arbitration. The situation with Flexible's dual bus is less
clear, but this same type of effect is probably occurring. Since the critical sections
themselves are very short, increasing the number of bus cycles required by the unlock
instruction will significantly degrade performance, and this is evident from the plot.
Apparently, it is the read--write cycles that place the greatest burden on the shared
memory bus. The bus contention appears to be much less for the barriers that do not
use spinlocks.

Figure 4-3 shows the barrier performance when synchronizing variable length
parallel work blocks. As the profiles model predicts, the linear barriers are better able
to exploit the variation in process arrival times. One interesting feature is that the
linear harriers with broadcast exit, do a better job than those that have linear exit
phases. In efforts to prevent visual clutter, Figures 4-3 and 4-4 do not plot curves for

-20-

1 .3 -effective depth
bro

1.2- milliseconds)

bbrlok
1.0-

.9-

.7

'5i
.5- bartre

.14 forl in

3 - bbrtre

0 2 4 b 8 10 12 14 16 18
nP, the number of processes

barlia: linear (pre-sched), no locks, symmetric entry & signal phases

barlok: linear (self-sched), locks, symmetric
bartre: tree structured, no locks, symmetric
bartrl: tree structured, locks, symmetric

bbrlin: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (self-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast
bbrtrl: tree structured, locks, broadcast

Figure 4-2 Timing results for barriers
synchronizing fixed-length work

-21-

effective depth

(milliseconds)

1.0

.9-

.8-

47-

.6-

.5-

4 bartre

barl In

.2 bbrlin

0 2 4 6 8 10 12 14 16 18
np, the number of processes

barlin: linear (pre-sched), no locks, symmetric entry & signal phases
bartok: linear (self-sched), locks, symmetric
bartre: tree structured, no locks, symmetric

bbrlin: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (seif-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast

Figure 4-3 Timing results for barriers
synchronizing variable-length work

-22-

effective depthi

(milliseconds)

1.0

.9

v8

.7

.6

.5

.4 brr

'3tr

.2li

0 2 4i 6 8 10 12 14 16 18
np, the number of processes

barlin: linear (pre-ched), no locks, symmetric entry & uignal phases
barlok: linear (self-sched), locks, symmetric
bartre- tree structured, no locks, symmetric

bbriz: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (self-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast

Figure 4-4 Timing results for barriers
sync hroniz~ing fixed work containing

3 critical section

-23-

the tree barriers that use locks. However, timing measurements were made for these
algorithms as well, and the tree barriers with locks showed substantially greater over-
head than the tree barriers without locks.

Figure 4-4 plots the barrier performance when synchronizing work blocks with
critical sections. For the case of critical sections, the barriers that had the worst per-
formance in the fixed length work experiment now show the best performance! Even
for the larger values of np, the linear barriers have a small depth that remains nearly
independent of np, whereas the tree structured barriers show their normal logarithmic
growth. Although Figure 4-4 may look cluttered, it would be misleading to prnvide
more detail by enlarging the time scale since the timing granularity is within :t .02
Ms.

5. Conclusions

Three concepts were isolated in the development of these barrier algorithms. A
barrier may have linear or tree structured communication patterns. A barrier may
have symmetric entry and signal phases, or the signal phase may use a single broadcast
exit signal. And synchronization within a barrier may rely solely upon memory
accesses into shared data structures, or algorithms may use locks and their associated
spinlock routines. For the sake of completeness, and to provide for a thorough founda-
tion upon which to make comparisons, all eight combinations of these three concepts
were realized as barrier algorithms. Specifying which of these barriers is the "belt" is
not so easy a task, since there are several trade offs involved and different machine
architectures may favor different barrier implementations.

5.1. Analysis

If we have parallel routines that can be executed by an arbitrary number of
processes, then the speedup of a parallel routine can be defined to be the ratio of the
single process execution time of the routine (without synchronization overheads)
against, the parallel execution time (including synchronization overheads). Efficiency is
defined as the ratio of the speedup to np. A parallel work cad! that is not evenly bal-
anced among processes between barrier iterations is a primary cause of loss of
efficiency. The barrier algorithm itself may also contribute to the inefficiency of a
parallel program.

Introducing optimized barriers into existing programs tends to result in only
minor improvement in the speedup if these programs were not "barrier bound" to
begin with. Optimizing the barrier's execution time delivers instead a different payoff:
the threshold size of work blocks that may profitably be parallelized is decreased.
Equation (8) shows the formula for speedup when considering only a single parallel
work block followed by a barrier, where Wp is the time required for np processes to

execute the parallel work. W, is the single process execution time, and Bup is the
effective barrier execution time. If Wap >> B.p, then decreasing B will not
improve the speedup by much. However, if B.p is of similar or greater magnitude than
WP' then decreasing Bep will substantially increase the speedup. Thus reducing B1 p,
the barrier effective execution time, improves the speedup when small chunks of work
(followed by a barrier) are parallelized, and also allows programmers to profitably
employ barriers to synchronize yet smaller parallel work blocks.

WI
(8) opeedup W +

-24-

When synchronizing 18 processes, the effective execution times of these barriers
on Flex/32 ranged between .12 ms to 1.32 ms across all the experiments; with ranges
of .20 ins to 1.32 ms for fixed length work, .15 ms to 1.07 ms for variable length work,
and .12 ms to .38 ms for fixed length work with an imbedded critical section. The
variance in these times is mostly due to the linear algorithms, whose performance is
quite dependent on the type of work that they synchronize. The tree barriers had
much more stable execution times across the experiments. For reference, when syn-
chronizing 18 processes, bartre ranged between .38 to .44 ms per iteration across the
three experiments, and bbrtre ranged between .26 to .29 ms.

In order to place the barrier execution times into perspective, let us compare their
effective depth with the execution speed of the following single precision Fortran vec-
tor calculation: C(i) - C(i)+A(i)*B(i). The National Semiconductor NS32032s used
in the Flex/32 (Greenhills compiler) require about .038 ms to compute this sum and
product for each iteration of the vector index i. This measurement includes Fortran
DO loop overhead and index calculations as well as the floating point multiplication
and addition. Thus, the range of barrier times, .12 to 1.32 ms, maps into a range of 3
to 35 of these sequential vector element multiply-additions. As an example, the
effective depth of bbrtre synchronizing 18 processes, .26 ms, is roughly equivalent to 7
of these vector element multiply-additions.

The primary advantage of the tree barriers is their logarithmic depth. As the
number of processes, np, becomes large, this advantage becomes overwhelming, as
demonstrated in Figure 4-2, the timing results for barriers synchronizing fixed length
work. Although the per stage execution times of the tree barriers are higher than
those of the linear barriers, considering Figure 4-2, we see that the tree barriers would
all be expected to overtake their linear counterparts as np becomes large enough. For
example, using the results obtained on the Flex/32, bbrtre would be expected to over-
take even bbrlin, the most efficient linear barrier synchronizing fixed length work, for
values of np near 20. Yet, the linear barriers are able to improve their performance as
process arrival times become increasingly staggered, while the depth of a tree barrier is
nearly invariant with respect to process arrival behavior. For example, if there are
critical sections between successive barrier iterations, then the self-scheduled linear
barriers (barlok, bbrlok) are almost ideally efficient, wbile the depth of a tree barrier
remains proportional to log.,(np).

The tree barriers presented in this paper have a logarithmic depth similar to that
of the proposed butterfly barrier [7]. However the data requirements and synchroniza-
tional complexity of the trees are substantially lower, both O(np), rather than
O(np*log,(np)) as is the case with the butterfly barrier. Synchronizational complexity
is defined'as the number of communications between processes. Consider the tree bar-
rier, removing the exit phase, in relation to the butterfly barrier. If one takes np
trees, letting each process be the root of one of these trees, and then one superimposes
all np of these trees removing redundancies, then the butterfly topology results. Thus
symmetry is achieved at a cost of superimposing np master-slave tree topologies. The
butterfly barrier distributes the function of master to every process, requiring each
process to determine independently that all others have arrived. One could argue
that, depending on machine architecture, the butterfly barrier would probably have
inferior performance compared to the tree, due to the sheer magnitude (
O(np*log.(np))) of shared memory accesses. While the inherent symmetry of the
butterfly Garrier is aesthetically appealing, this is quite a price to be paid for that sym-
metry.

On the Flex/32, the tree barriers that use only controlled access to synchronizing
variables are more efficient than those that use spinlocks. One observation is that the
tree barriers using locks tended to show nearly linear depth on the Flex/32, due to the
bus contention problem caused by the layers of spinlocks. In fact, the indivisible

-25-

read--write bus cycles are unnecessary for the tree barriers, and they tie up the shared
memory bus(es) longer than necessary. In general, spinlocks tend to require subroutine
linkage or possibly inefficient operating system calls, and the spinlocks involve addi-
tional computational steps than the set/clear mechanisms. However, one should keep
in mind that spinlocks may provide superior performance on machines with special
hardware supporting locks.

The issue of whether to use spinlocks or not is a different matter all together for
the linear barriers. The linear spinlock barriers allow the processes to arrive in any
order, 8elf-acheduling the entry into the critical section, and they very effectively
exploit any variation in their arrival times. The pre-schedulea linear barriers (using
set/clear mechanisms) require a fixed order of arrival of the processes in order to
achieve their best performance. These barriers are also able to exploit variations in
process arrival times, but to a lesser degree than their self-scheduled counterparts.
Thus, the self-scheduled barriers that use spinlock routines are appealing. However,
consider the following trade off. On one hand, as demonstrated in Figures 4-3 and 4-4,
the self-scheduled algorithms have better performance when process arrival patterns
are significantly skewed. However, due to the critical sections, each stage of the self-
scheduled barriers requires more execution time than the corresponding stage of the
pre-scheduled barriers. This situation occurs even on the Flex/32 which supports a
machine language test and set instruction used to implement the critical sections. So
on the other hand, when processes arrive all at once and the effective depth of a linear
barrier is the sum of its stages, then the linear pre-scheduled barriers show better per-
formance than the self-scheduled barriers, as shown in Figure 4-2. i

All of the barrier algorithms developed in this paper have analogous versions
using either symmetric entry and signal phases, or the broadcast exit/polarity idea
developed above. On the Flex/32, the broadcast versions show superior performance
than their symmetric counterparts. The broadcast exit reduces the exit depth from np
or log(np) to one, while requiring only minimal computation. If the underlying
machine hardware supports true parallel reads of shared data, then the broadcast exit
mechanism is almost ideally efficient. If the machine hardware does not support true
parallel reads, then the situation where many processes compete to read the exit vari-
able is like a linear critical section, but with a very short time quantum, a single
shared memory bus cycle. Given this situation, a very large number of processes, and
a machine with multiple, hashed, shared memory modules, where memory references to
distinct modules may proceed in parallel, then the symmetric tree barriers (bartre,
bartri) could conceivably yield better performance since they eliminate the competi-
tion to read the single exit variable. Care would have to be taken to insure that the
synchronizing variables are kept in different memory modules.

5.2. Recommendations

It is an interesting result that the tree barriers show better performance for the
case of fixed length work, while the linear self-scheduled barriers show improved per-
formance for variable length work and better performance for fixed length work that
contains a critical section. One consequence is that linear barriers are well suited to
synchronizing self-scheduled parallel loops, while tree barriers are better suited to syn-
chronizing pre-scheduled homogeneous loops. For finely tuned applications, it may be
desirable to tailor the barrier to the work it synchronizes in order to achieve optimal
performance. Perhaps in the future, an intelligent compiler may be able to make this
decision on a case by case basis. However, in the present day for general applications
it would seem easier to decide on a single default barrier in order to insulate the paral-
lel programmer from this type of decision.

Before selecting a default barrier for use on a particular machine architecture, it
would be wise to try out several of the algorithms, due to the wide variance and

-26-

peculiarity of the shared memory multiprocessors currently available. However, if gen-
eral recommendations can be made, then the barriers should be chosen based on what-
ever desirable theoretical attributes they possess. For larger values of np (np > -8),
bbrtre, the tree broadcast barrier without locks, is recommended for general applica-
tions due to its logarithmic depth and excellent execution times. For the smaller
values of np (np < -8) and/or applications with many critical sections, bbrlok, the
self-scheduled linear barrier with broadcast exit is also a good choice. This barrier
always delivers good performance for small values of np, and for larger values of np it
performs well when it is able to exploit the run ;tne conditions associated with
significant process skew. Both of these barriers, coded in an extended Fortran, are
shown in Appendix A.

-27-

References

[I II. F. Jordan, "Special purpose architecture for finite element analysis."
Proceedings of the 1978 International Conference on Parallel Processing,
August, 1978, pp. 263-286.

[21 G. Pfister, W. Brantley, D. George, F 14 -, vy, W. Kleinfelder, K. McAuliffe, E.
Melton, V. Norton, and J. Weiss, "The IBM research parallel processor proto-
type (RP3): Introduction and Architecture," Proceedings of the 1985 Interna-
tional Conference on Parallel Processing, August, 1985, pp. 764-771.

(3] E. Lusk, R. Overbeek, "Use of monitors in Fortran: A tutorial on the barrier,
self-scheduling do loop and askfor monitors," Argonne National Laboratory
Report No. ANL-84-51, Argonne. Illinois, June, 1985.

[41 H. Jordan, "The Force," I= rhar iiterkic. L ii _talig h , L. Jamie-
son, D. Gannon. and R. Douglass, Eds., Chapter 16, MIT Press, 1987.

[51 P. Frederickson, R. Jones, and B. Smith, *Synchronization and control of paral-
lel algorithms," Parallel Computing, Vol 2, No. 3, pp. 25 5-2 64 (Nov. 1986)i

[8] A. Osterhaug, "Guide to parallel programming on Sequent Computer Systems,"
Sequent Computer Systems, Inc., Beaverton, Oregon, 1985.

[7] T. S. Axelrod, "Effects of synchronization barriers on multiprocessor perfor-
mance," Parallel Computing, Vol 3, No. 2, pp. 129-140 (May 1986).

[8] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph and M. Snir,
"The NYU Ultracomputer - Designing an MIMD shared memory parallel com-
puter," IEEE Trans. on Computers, Vol. C-32, No. 2, pp. 175-189 (Feb. 1983).

[9] P. Tang, P. Yew. "Processor self-scheduling for multiple-nested parallel loops,"
Proceedings of the 1986 International Conference on Parallel Processing,
August, 1986, pp. 528-535.

110] .1fulticomputing multitasking operating system (MAfMOS) reference manual, Flexi-
ble Computer Corporation, Dallas, TX, 1986.

-28-

Appendix A

Fortran code for
Barlin, Barlok, Bartre, Bartrl, Bbrlin, Bbrlok, Bbrtre, Bbrtrl

The following eight barriers, coded in an extended Fortran, are inclvided in this
Appendix. The extended Fortran -lIo-, Private and Shared declarations as well as
sp :ilock and unlock primitives. In all cases, the unlock statement denotes a simple
unconditional unlock routine.

barlin: linear (pre-sched), no locks, symmetric entry & signal
barlok: linear (selt-sched), locks, symmetric
bartre: tree structured, no locks, symmetric
bartrl: tree structured, locks, symmetric

bbrlln: linear (pre-sched), no locks, broadcast exit signal
bbrlok: linear (self-sched), locks, broadcast
bbrtre: tree structured, no locks, broadcast
bbrtrl: tree structured, locks, broadcast

These barriers require a single a priori initialization. One process must execute a
call to Shjnit once before any barriers are executed, in order to initialize the shared
variables. Normally the process that forks the other processes can call Sh.init. The
argument to Sh.init should be np, the number of processes participating in the bar-
rier. Also each process must execute a call to Prjnit once in order to initialize its
private data structures. The arguments to Pr-init are the process id, (numbered from
one to np, unique for each process) and np, the number of participating processes.

These barriers are coded using subroutines calls. The process with id- 1 will
always execute the sequential part. A typical expansion of the barriers follows.

C Begin Barrier

CALL Bar.entry
if (id .eq. 1) then

j< optional sequential code block >]

C End Barrier
CALL Bar-.oignal
end if

-29-
Appendix A barlin

* barlin: linear (pre-scheduled), no locks, symmetric structure

Subroutine Bar.-ntry
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, np

if (id. eq. 1) then
do 10 i=2,np

20 if(LARRAY(i) .eq. .true.) goto 20
10 continue

else
LARRAY(id) - .false.

call Bar..signal
end if
return
end

Subroutine Bar.ignal
Shared comm.,- /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, up

if (id. eq. 1) then
do 10 i=2,np

LARRAY(i) .true.
10 continue

else
20 if (LARRAY(id) .eq. .alse.) goto 20

end if
return
end

Subroutine Prinit(tid,tnp)
integer tid,tnp
Private common /Prbar/ integer id, np

id tid
np tnp
return
end

Subroutine Shinit(tnp)
integer tnp
Shared common /Shbar/ logical LARRAY(20)

do 10 i=2,np
LARRAY(i)= .true.

10 continue
return
end

Appendix A -3-barlok

*barlok: linear (self-scheduled), locks, symmetric structure

Subhrouitine Bar...ntry
Shared common /Shbar/ logical ENTRY, EXIT
Shared common /Sbbar/ integer COUNTER
Private common /Prbar/ integer id, np, mycount

spinlock (ENTRY)
mvcount = COUNTER + 1
CbUNTER = mycount

if (mycount .i.- sip) uulock(ENTRY)
ift(id eq. 1) then

10 it (COUNTER .ne. np) goto 10
return

else
,qpinlock(EXIT)

end if
mvcount = COUNTER - I
C6UNTER = mycount
it (mycount eq. 0) then

un lock (ENTRY)
else

unlock(EXIT)
end if
return
end

Subroutine Bar-jignaI
Shared common /Shbar/- logical ENTRY, EXIT
Shared common /Shbar/ integer COUNTER
Private common /Prbar/ integer id, np, mycount

COUNTER = COUNTER -1
unlock(EXIT)
return
end

Subroutine Prjinit(id, np)
integer tid,tnp
Private common /Prbar/ integer id. np, mycount

id =tid

np trip
return
end

Subroutine Sh-..nit(tnp)
integer tnip
Shared common /Shbar/ logical ENTRY, EXIT
Shared common /Shbar/ integer COUNTER

COUNTER = 0
unlock(ENTRY)
unlock(EXIT)
rpinlock(EXIT)
return
end

-31-
Appendix A bartre

,S.. ***5* 5 5 g*,**si*g**5*5***t*iiS~l*~*e*!***S*****5 5Is * 5 5 .5. 5 5*5g.

* bartre: tree structured, no locks, symmetric structure

Subroutine Bar.entry
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, up, lim

10 limflim/2
20 if (id .e. lir) then

if ((id+lim) .gt. np) goto 10
30 if (LARRAY(id+Iim) .eq. true.) goto 30

Soto io
end if
LARRAY(id) = .false.
if (id .ne. 1) call Bart-ignal
return
end

Subroutine Barjignal
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, up, lim

if (id .ne. 1) goto 10
lim = 1

goto 30
10 if (LARRAY(id) .eq. .false.) goto 10
20 lim=lim * 2
30 if((id+lim) .1e. np) then

LARRAY(id+lim) = .true.
goto 20

end if
return
end

Subroutine Pr.jnit(tid,tnp)
integer tid.tnp
Private common fPrbar/ integer id, np, lim

id = tid
np = tnp

C initialize lim such that: Iim=2**n >= up > 2**(n-1)
lim = I

10 if (lim It. np) then
lia = lim * 2
goto 10

end if
return
end

Subroutine Shjnit(tnp)
inlegr tnp
Shared common /Shbar/ logical LARRAY(20)

do 10 i=2.np
LARRAY(i)= true.

10 continue
return
end

Appendix A -3-bartrl

*hartrl: tree structured, locks, symmetric structure

Subroutine Bar-rntry
Shared common /Shbar/ logical INARRAY(20), OUTARRAY(20)
Private common /Prbar/ integer id, op, lima

10 lim =lim/2
20 if (id .1e. lim) then

if ((id+lim) .gt. np) goto 10
30 spinlock(INARRAY(id+lim))

goto 10
end if
unlock (ZNARRAY(id))
if (id .ne. 1) CALL Bar-..ignal
return
end

Subroutine Bar-.ignal
Shared common /Shbar/ logical INARRAY(20), OUTARRAY(20)
Private common /Prbar/ integer id, op, lim,

if (id .ne. 1) goto 10
Jim = I
goto 30

10 spinllock(OUTARRAY(id))
20 Jim =lim*2
30 it((id+lim) .1e. np) then

unlock (OLYTARRAY(id +lim))
goto 20

end if
return
end(

Subroutine Pr-jnit(tid,tnp)
integer tid,tnp
Private common /Prbar/ integer id, np, Jim

id =tid

op =top

C initialize Jim such that: lim=2**n > = op > 2**(o.1)
Jim = I

10 if (Jim It. np) then
Jim = Jim *2
goto 10

end if
return
end

Subroutine Sh..init(top)
integer tOp
Shared common /Shbar/ logical INARRAY(20), OUTARRAY(20)

do 10 i= 1,np
"unlock (INARRAY(i))
u nlock (OUTARRAY(i))
8pinlock (INARRAY(i))
apinlock(OUTARRAY(i))

10 continue
return
end

Appendix A -3-bbrlin

*bbrlin: linear (pre-scheduled), no locks, broadcast exit

Subroutine Bar-enutry
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, up, polarity

if (id eq. 1) then
do 10 i - 2,np

20 if (LARRAY(i) ne. polarity) goto 20
10 continue

else
LARRAY(id) - polarity
polarity - not. polarity

30 if (LARRAY(1) .eq. polarity) goto 30
end if
return
end

Subroutine Bar-5ignal
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, up, polarity

LARRAY(I) -polarity
polarity = .not. polarity
return
end

Subroutine Pr..nit(tid,tnp)
integer tid,tnp
Private common /Prbar/ integir id, np, polarity

id =tid

np =tnp

polarity =.true.
return
end

Subroutine Sh...init(tnp)
integer tnp
Shared common /Shbar/ logical LARRANY(20)

do 10 i= 1np
LARRAY(i)= ralse.

10 continue
return
end

-34-
I

Appendix A bbrlok

hbrlok: linear (self-scheduled), locks, broadcast exit

Subroutine Bar.entry
Shared common /Shbar/ logical ENTRY, EXIT
Shared common /Shbar/ integer COUNTER
Private common /Prbar/ integer id, np, polarity

if (id eq. 1) then
10 if (COUNTER .ne. 0) goto 10

else
,opinlock(ENTRY)
COUNTER= COUNTER-I
unlock(ENTRY)
polarity = .not. polarity

20 if (EXIT .eq. polarity) goto 20
end if
return
end

Subroutine Bar.signal
Shared common /Shbar/ logical ENTRY, EXIT
Shared common /Shbar/ integer COUNTER
Private common /Prbar/ integer id, np, polarity

COUNTER = np - 1
EXIT = polarity
polarity = not. polarity
return
end

Subroutine Pr.init(tid.tnp)
integer tid.tnp
Private common /Prbar/ integer id, np, polarity

id = t id
np = tnp
polarity =.true.
return
end

Subroutine Sh.jnit(tnp)
integer tnp
Shared common /Shbar/ logical ENTRY, EXIT

COUNTER = np -I
EXIT = .alse.
unlock(ENTRY)
return
end

-35-

Appendix A bbrtre

* bbrtre: tree structured, no locks, broadcast exit

Subroutine Bar..entry
Shared common /Shbar/ logical LARRAY(20)
Private common /Prbar/ integer id, np, lim, polarity
Private integer ilim, isum

ilim = lir
goto 20

10 ilim=ilim/2
20 if lid .e. ilim) then

isum = id + ilim
if (isum .gt. np) goto 10

30 if (LARRAY(isum) .ne. polarity) goto 30
goto 10

end if
if (id ne. 1) then

LARRAY(id) = polarity
polarity = not. polarity

40 if (LARRAY(I) .eq. polarity) goto 40
end if
return
end

Subroutine Bar_signal
Shared common /Shbar/ logical LARRAY(-O)
Private common /Prbar/ integer id, np, lim, polarity

LARRAY(I) = polarity
polarity = .not. polarity
return
end

Subroutine Pr-jnit(tid,tnp)
integer tid.tnp
Private common /Prbar/ integer id, np, lir, polarity

id = Lid
np tnp
polarity =.true.

C initialize lim such that: lim=2**n < np <= 2**(n+l)
lim = 1

10 if (lir It. np) then
lim = lirp*2
goto 10

end if
lim = lir / 2
return
end

Subroutine Sh-jnit(tnp)
integer tnp
Shared common /Shbar/ logical LARRAY(20)

do 20i = l,tnp
LARRAY(i) = .false.

20 continue
return
end

-36-

Appendix A bbrtrl

" bbrtrl: tree structured, locks, broadcast exit

Subroutine Bar-entry
Shared common /Shbar/ logical INARRAY(20)
Private common /Prbar/ integer id, op, lim, polarity
Private integer ilim, isum

ilim=lim
goto 20

10 ilim= ilim/2
20 if fid .le. ilim) then

isum = id + ilim
if (isum .gt. np) goto 10

30 spinlock(INARRAY(isum))
goto 10

end if
if (id .ne. 1) then

unlock(INARRAY(id))
polarity = .not. polarity

40 if (INARRAY(I) eq. polarity) goto 40
end if
return
end

Subroutine Bar.signal
Shared common /Shbar/ logical INARRAY(20)
Private common /Prbar/ integer id, np, lim, polarity

INARRAY(l) = polarity
polarity = .not. polarity
return
end

Subroutine Pr-jnit(tid,tnp)
integer tidtnp
Private common /Prbar/ integer id, np, lim, polarity

id = tid
np= tnp
polarity =.true.

C initialize lim such that: lim=2**n < np < 2**(n+l)
lim = 1

10 if (lim It. np) then
lim = lim * 2
goto 10

end if
lim = lim / 2
return
end

Subroutine Sh-init(tnp)
integer tap
Shared common /Shbar/ logical INARRAY(20)

INARRAY(l) .false.
do 10 i=2,np

unlockt INARRAY(i))
spinlock(INARRAY(i))

10 continue
return
end

-37-

Appendix B

Compiler issues: optimized out references to shared data?

Consider the following two lines of Fortran code. Statement pairs like this can
occur in several of the barriers that have been developed in this paper.

flag - .true.
10 if (flag .eq. .true) goto 10

If flag is a shared variable, and another process is expected to set flag to false,
then we see that this pair of statements is perfectly reasonable. However, if a conven-
tional high performance optimizing compiler got hold of these two lines, then it might
well optimize out the second reference to flag, causing an infinite loop.

What is needed is a new generation of compilers designed for parallel languages.
Such compilers would be free to fully optimize references to private variables, storing
them in machine registers, etc. But, compilers for parallel languages should, in gen-
eral, never optimize out references to shared variables in the code that they produce.

Since many present compilers do not meet tiis requirement, it may be necessary
to fool a compiler, so that it will not remove memory references to shared vari bles.
One simple way to do this is to put one or both of the statements in the above example
into a subroutine. For a language such as Fortran, assuming parameters are passed by
address (and not with copy-restore), this "quick fix" is sufficient to insure that all
required references to shared variables actually occur. This is the approach that has
been adopted for the algorithms coded in Appendix A. A second alternative is to code
in assembly language. Still another alternative is to thoroughly understand the com-
piler to be used, before programming in a compiled high level language.

NASA Report Documentation Page
NX"% A. 1WaAC

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.NASA CR- 178377
ICASE Report No. 87-65

4. Title and Subtitle 5. Report Date

COMPARING BARRIER ALGORITHMS September 1987

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Norbert S. Arenstorf, Harry F. Jordan 87-65

10. Work Unit No.

505-90-21-01
9. Performing Organization Name and Address

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering NASI-18107
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Cnntrartnr Rannrr
Langley Research Center 14. Sponsorig Agecy Coae

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technicil Monitor: To be submitted to Parallel
Richard W. Barnwell Computing and/or Journal of

Parallel and Distributed
Final Report Computing

16. Abstract

A barrier is a method for synchronizing a large number of concurrent

computer processes. After considering some basic synchronization mechanisms, a
collection of barrier algorithms with either linear or logarithmic depth will be
presented. A graphical model is described that profiles the execution of the
barriers and other parallel programming constructs. This model shows how the
interaction between the barrier algorithms and the work that they synchronize
can impact their performance. One result is that logarithmic tree structured
barriers show good performance when synchronizing fixed length work, while
linear self-scheduled barriers show better performance when synchronizing fixed
length work with an imbedded critical section. The linear barriers are better
able to exploit the process skew associated with critical sections. Timing
experiments, performed on an eighteen processor Flex/32 shared memory multi-
processor, that support these conclusions are detailed.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

barrier, synchronization, multi- 61 - Computer Programming and
processor, shared memory, speedup Software

UnllcA-Itffpd - tinlimil-PA19. Security Clasif. (of this report) 20. Security Clasif. (of this pag) 21. No. of pages 22. Price

Unclassified Unclassiffed 39 A03

NASA FORM 162B OCT 86

